(r, R+1)-factorizations of (d, D+1)-graphs

نویسنده

  • Anthony J. W. Hilton
چکیده

A (d, d + 1)-graph is a graph whose vertices all have degrees in the set {d, d + 1}. Such a graph is semiregular. An (r, r + 1)-factorization of a graph G is a decomposition of G into (r, r + 1)-factors. For d-regular simple graphs G we say for which x and r G must have an (r, r + 1)-factorization with exactly x (r, r + 1)-factors. We give similar results for (d, d + 1)-simple graphs and for (d, d + 1)-pseudographs. We also show that if d ≥ 2r 2 + 3r − 1, then any (d, d + 1)-multigraph (without loops) has an (r, r + 1)-factorization, and we give some information as to the number of (r, r + 1)-factors which can be found in an (r, r + 1)-factorization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

D-Spectrum and D-Energy of Complements of Iterated Line Graphs of Regular Graphs

The D-eigenvalues {µ1,…,µp} of a graph G are the eigenvalues of its distance matrix D and form its D-spectrum. The D-energy, ED(G) of G is given by ED (G) =∑i=1p |µi|. Two non cospectral graphs with respect to D are said to be D-equi energetic if they have the same D-energy. In this paper we show that if G is an r-regular graph on p vertices with 2r ≤ p - 1, then the complements of iterated lin...

متن کامل

Semiregular Factorization of Simple Graphs

A graph G is a (d, d + s)-graph if the degree of each vertex of G lies in the interval [d, d + s]. A (d, d + 1)-graph is said to be semiregular. An (r, r +1)-factorization of a graph is a decomposition of the graph into edge-disjoint (r, r + 1)-factors. We discuss here the state of knowledge about (r, r+1)-factorizations of d-regular graphs and of (d, d + 1)-graphs. For r, s ≥ 0, let φ (r, s) b...

متن کامل

On the Enumeration of One-Factorizations of Complete Graphs Containing Prescribed Automorphism Groups

In this paper we use orderly algorithms to enumerate (perfect) one-factorizations of complete graphs, the automorphism groups of which contain certain prescribed subgroups. We showed that, for the complete graph Ki2, excluding those one-factorizations containing exactly one automorphism of six disjoint cycles of length two, there are precisely 56391 nonisomorphic one-factorizations of Ki2 with ...

متن کامل

Computing the First and Third Zagreb Polynomials of Cartesian Product of Graphs

Let G be a graph. The first Zagreb polynomial M1(G, x) and the third Zagreb polynomial M3(G, x) of the graph G are defined as:     ( ) ( , ) [ ] e uv E G G x x d(u) + d(v) M1 , ( , )  euvE(G) G x x|d(u) - d(v)| M3 . In this paper, we compute the first and third Zagreb polynomials of Cartesian product of two graphs and a type of dendrimers.

متن کامل

Total domination in $K_r$-covered graphs

The inflation $G_{I}$ of a graph $G$ with $n(G)$ vertices and $m(G)$ edges is obtained from $G$ by replacing every vertex of degree $d$ of $G$ by a clique, which is isomorph to the complete graph $K_{d}$, and each edge $(x_{i},x_{j})$ of $G$ is replaced by an edge $(u,v)$ in such a way that $uin X_{i}$, $vin X_{j}$, and two different edges of $G$ are replaced by non-adjacent edges of $G_{I}$. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 308  شماره 

صفحات  -

تاریخ انتشار 2008